原子核的自旋量子数由什么法则确定?
原子核的自旋量子数由什么法则确定?
质量数和质子数均为偶数的原子核,自旋量子数为0 ,即I=0,如12C,16O,32S等,这类原子核没有自旋现象,称为非磁性核。质量数为奇数的原子核,自旋量子数为半整数 ,如1H,19F,13C等,其自旋量子数不为0,称为磁性核。质量数为偶数,质子数为奇数的原子核,自旋量子数为整数,这样的核也是磁性核。
元素周期表中元素可以测出核磁共振谱的条件:首先,被测的原子核的自旋量子数要不为零;其次,自旋量子数最好为1/2(自旋量子数大于1的原子核有电四极矩,峰很复杂);第三,被测的元素(或其同位素)的自然丰度比较高(自然丰度低,灵敏度太低,测不出信号)。
扩展资料发展历史:1921年,德国施特恩(Otto Stern,1888—1969)和格拉赫(Walter Gerlach,1889—1979)在实验中将碱金属原子束经过一不均匀磁场射到屏幕上时,发现射线束分裂成两束,并向不同方向偏转。这暗示人们,电子除了有轨道运动外,还有自旋运动,是自旋磁矩顺着或逆着磁场方向取向的结果。
于是1925年荷兰物理学家乌仑贝克(George Uhlenbeck,1900—1988)和哥希密特(Goudsmit,1902—1978)提出电子有不依赖于轨道运动的、固有磁矩(即自旋磁矩)的假设。自旋量子数s≡1/2,它是表征自旋角动量的量子数,相应于轨道角动量量子数。
自旋磁量子数ms才是描述自旋方向的量子数。ms= 1/2,表示电子顺着磁场方向取向,用↑表示,说成逆时针自旋;ms=-1/2表示逆着磁场方向取向,用↓表示,说成顺时针自旋。当两个电子处于相同自旋状态时叫做自旋平行,用符号↑↑或↓↓表示。当两个电子处于不同自旋状态时,叫做自旋反平行,用符号↑↓或↓↑表示。
直接从薛定谔方程得不到第四个量子数——自旋量子数ms,它是根据后来的理论和实验要求引入的。精密观察强磁场存在下的原子光谱,发现大多数谱线其实由靠得很近的两条谱线组成。这是因为电子在核外运动,还可以取数值相同,方向相反的两种运动状态,通常用↑和↓表示。