多边形的外角和为什么是360
多边形的外角和都是360°(以n边形为例),因为n边形就有n个角,如果都延长角的一条边,就会有n个180°,n边形的内角和计算公式为(n-2)*180°,外角和就等于180n-(n-2)*180°,化简后就是360°,所以多边形的外角一定是360°
任意凸多边形的外角和都为360°。多边形所有外角的和叫做多边形的外角和。如果多边形任意两边都没有公共的内点,任一边内都不含有顶点,并且每个顶点仅仅是两边的端点,这样的多边形叫做简单多边形。如果就平面简单多边形的每边所在直线而言,其余所有的边都在这直线的同侧,这样的多边形叫做凸多边形。
每个平面简单多边形都把平面分成两个区域,其中有且仅有一个域完全包含着某一直线。这个区域的点叫做多边形的外点,另一区域的点叫做多边形的内点(这就是若尔当定理)。
如果两凸多边形的角对应地相等,对应边也相等,这两个多边形就叫做全等多边形。凸多边形中,如果各边相等且各角也相等,这样的多边形叫做正多边形。
外角和
多边形都会有内角,与之对应的是外角,即将其中一条边延长后,延长线与另一条边成的夹角,称为外角。多边形外角的总和叫做外角和。任意多边形的外角和都为360°,与边数无关。
泰勒斯提出的三角形内角和定理,古希腊数学家欧几里德给予了证明。
泰勒斯,古希腊时期的思想家、数学家、科学家、哲学家,希腊最早的哲学学派,米利都学派的创始人。是史上第一位数学家。希腊七贤之一,西方思想史上第一个有记载有名字留下来的思想家,被称为科学和哲学之祖。泰勒斯是古希腊及西方第一个自然科学家和哲学家。泰勒斯的学生有阿那克西曼德、阿那克西美尼等。
欧几里得,古希腊数学家。他活跃于托勒密一世时期的亚历山大里亚,被称为几何之父,他最著名的著作《几何原本》是欧洲数学的基础,提出五大公式,欧几里得几何,被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品。