三角函数诱导公式大全
sinx=sin(x+2kπ);cosx=cos(x+2kπ);tanx=tan(x+2kπ)
诱导公式
(1)
sinx=sin(x+2kπ)
cosx=cos(x+2kπ)
tanx=tan(x+2kπ)
k∈Z
原理:终边相同的角同一三角函数值相同(或可用三角函数图像的周期性验证)
(2)
sin(-x)=-sinx
cos(-x)=cosx
tan(-x)=-tanx
(3)
sin(π+x)=-sinx
cos(π+x)=-cosx
tan(π+x)=tanx
(4)
sin(π-x)=sinx
cos(π-x)=-cosx
tan(π-x)=-tanx
原理:三角函数值中,正弦一二象限为正,余弦一四象限为正,正切一三象限为正(终边)
(5)
sin(π/2+x)=cosx
cos(π/2+x)=-sinx
tan(π/2+x)=-cotx
(6)
sin(π/2-x)=cosx
cos(π/2-x)=sinx
tan(π/2-x)=cotx
两角公式
(1)两角和差公式
sin(x+y)=sinxcosy+sinycosx
sin(x-y)=sinxcosy-sinycosx
cos(x+y)=cosxcosy-sinxsiny
cos(x-y)=cosxcosy+sinxsiny
tan(x+y)=sin(x+y)/cos(x+y)=sinxcosy+sinycosx/cosxcosy-sinxsiny=tanx+tany/1-tanxtany
tan(x-y)=sin(x-y)/cos(x-y)=sinxcosy-sinycosx/cosxcosy+sinxsiny=tanx-tany/1+tanxtany
证明:单位圆作图
(2)二倍角公式
sin2x=2sinxcosx
推导:sin2x=sin(x+x)=sinxcosx+cosxsinx=2sinxcosx
cos2x=(cosx)²-(sinx)²=2cos²x-1=1-2sin²x (sin²x+cos²x=1)
推导:cos2x=cos(x+x)=cosxcosx-sinxsinx=cos²x-sin²x
tan2x=sin2x/cos2x=2sinxcosx/cos²x-sin²x=2tanx/1-tan²x
三倍角公式
sin3x=sin(2x+x)=sin2xcosx+cos2xsinx=2sinx(1-sin²x)+(1-2sin²x)sinx=3sinx-4sin³x
cos3x=cos(2x+x)=cos2xcosx-sinxsin2x=(2cos²x-1)cosx-2cosx(1-cos²x)=4cos³x-3cosx
tan3x=sin3x/cos3x=tanxtan(π/3+x)tan(π/3-x)