柯西不等式高中公式
二维形式:(a^2+b^2)(c^2 + d^2)≥(ac+bd)^2
二维形式
(a^2+b^2)(c^2 + d^2)≥(ac+bd)^2
等号成立条件:ad=bc
三角形式
√(a^2+b^2)+√(c^2+d^2)≥√[(a-c)^2+(b-d)^2]
等号成立条件:ad=bc
向量形式
|α||β|≥|α·β|,α=(a1,a2,…,an),β=(b1,b2,…,bn)(n∈N,n≥2)
等号成立条件:β为零向量,或α=λβ(λ∈R)。
一般形式
(∑ai^2)(∑bi^2) ≥ (∑ai·bi)^2
等号成立条件:a1:b1=a2:b2=…=an:bn,或ai、bi均为零。
补充
①不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;
②不等式性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变。
常用定理
①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。
②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x) ③如果不等式F(x) ④不等式F(x)G(x)>0与不等式同解;不等式F(x)G(x)<0与不等式同解。 排序不等式 对于两组有序的实数x1≤x2≤…≤xn,y1≤y2≤…≤yn,设yi1,yi2,…,yin是后一组的任意一个排列,记S=x1yn+x2yn-1+…+xny1,M=x1yi1+x2yi2+…+xnyin,L=x1y1+x2y2+…+xnyn,那么恒有S≤M≤L。 当且仅当x1=x2=……=xn且y1=y2=……yn时,等号成立。 扩展 柯西(Cauchy,Augustin-Louis,1789-1857)是法国数学家、力学家。27岁成为巴黎综合工科学校教授,并当选为法国科学院 院士。他的一生获得了多项重要的成果,柯西不等式便是他的一个非常重要的成果。除此之外他在数学的很多领域都进行了深刻的研究,其中包括数论、代数、数学分析和微分方程等,为数学的发展做出的突出的贡献。柯西对高等数学的贡献包括:无穷级数的敛散性,实变和复变函数论,微分方程,行列式,概率和数理方程等方面的研究.目前我们所学的极限和连续性的定义,导数的定义,以及微分、定积分用无穷多个无穷小的和的极限定义,实质上都是柯西给出的。数学中很多定理都冠以柯西的名字,如柯西收敛原理、柯西中值定理、柯西积分不等式、柯西判别法、柯西方程等等。