2的负一次方等于多少
0.5
1/2的负一次方等于2。
计算过程:2^(-1)=1/(2^1)=1/2。
因为当运算的幂次为负数时,可以先转化成正数的幂次进行运算。当幂的指数为负数时,称为“负指数幂”。正数a的-r次幂(r为任何正数)定义为a的r次幂的倒数。
负指数幂也是不能用正整指数幂的意义来解释的。也就是说“a^(-p)”不能认为是“(-p) 个相a乘”的意思。另外在定义中规定底数不得为零,其原因是和零指数幂的定义是一样的。
幂的运算法则
当指数概念扩充到任意实数之后,幂的运算法则可合并为:
1、a^m*a^n=a^(m+n),(a>0)。
2、(a^m)^n=a^(m*n),(a>0)。
3、(a*b)^n=a^n*b^n,(a>0,b>0)。
注意:a^0=1,(a不等于0)。
正整数指数幂、负整数指数幂、零指数幂统称为整数指数幂。正整数指数幂的运算法则对整数指数幂仍然是成立的。
个数得负1次方,等于这个数的倒数。一个数的负几次方就是这个数的几次方的倒数。
举例说明如下
(1)2的负1次方=2的1次方分之一=1/2
(2)3的负2次方=3的2次方分之一=1/9
(3)4的负2次方=4的2次方分之一=1/16
次方
次方最基本的定义是:设a为某数,n为正整数,a的n次方表示为aⁿ,表示n个a连乘所得之结果,如2⁴=2×2×2×2=16。次方的定义还可以扩展到0次方、负数次方、小数次方、无理数次方甚至是虚数次方。
在电脑上输入数学公式时,因为不便于输入乘方,符号“^”也经常被用来表示次方。例如2的5次方通常被表示为2^5。
一个数的负一次方即为这个数的倒数。例如:2的-1次方=1/2的一次方;1/2的-1次方=2的一次方。倒数是指数学上设一个数x与其相乘的积为1的数,记为1/x,过程为“乘法逆”,除了0以外的数都存在倒数,0没有倒数。
负次方与倒数
x^a/x^b=x^(a-b)
x^0=1(x≠0)
根据1式x^0/x^a=x^(-a)
根据2式x^0/x^a=1/(x^a)
由此x^(-a)=1/(x^a)
即x^(-a)=1/(x^a)