373的质因数是多少
1和373
质因数,就是指一个正整数的约数,并且该数还属于是质数的数字,质因数有时候也被我们叫做“素因数”和“质因子”,举例子来说,在2×2×2=8这个等式当中,数字2是数字8的约数,且2还属于质数,就称2是8的质因数。
如果两个为正数的正整数,在除开数字1之外,就没有了其他任何相同的质因数,我们就可以说这两个正整数互质。质因数这一概念在因数分解当中有着非常重要的作用将一个式子用8=2×2×2这种形式表现出来,就可以称它为分解质因数。
分解质因数代码
将一个正整数分解质因数。例如:输入90,打印出90=2*3*3*5。
程序分析:对n进行分解质因数,应先找到一个最小的质数k,然后按下述步骤完成:
(1)如果这个质数恰等于n,则说明分解质因数的过程已经结束,打印出即可。
(2)如果n>k,但n能被k整除,则应打印出k的值,并用n除以k的商作为新的正整数n,重复执行第一步。
(3)如果n不能被k整除,则用k+1作为k的值,重复执行第一步。
基本信息
质因数就是一个数的约数,并且是质数。
比如8=2×2×2,2就是8的质因数;
12=2×2×3,2和3就是12的质因数。
把一个式子以12=2×2×3的形式表示,叫做分解质因数。
把一个合数写成几个质数相乘的形式表示,这也是分解质因数,如16=2×2×2×2,2就是16的质因数。
把一个合数分解成若干个质因数的乘积的形式,即求质因数的过程叫做分解质因数。
分解质因数只针对合数。(分解质因数也称分解素因数)求一个数分解质因数,要从最小的质数除起,一直除到结果为质数为止。
分解质因数的方法是先用一个合数的最小质因数去除这个合数,得出的数若是一个质数,就写成这个合数相乘形式;若是一个合数就继续按原来的方法,直至最后是一个质数 。
分解质因数的有两种表示方法,除了最常用的“短除分解法”之外,还有一种方法就是“塔形分解法”。
分解质因数对解决一些自然数和乘积的问题有很大的帮助,同时又为求最大公约数和最小公倍数做了重要的铺垫。