均值不等式公式四个
a²+b²≥2ab;√(ab)≤(a+b)/2;a²+b²+c²≥(a+b+c)²/3;a+b+c≥3×三次根号abc
均值不等式 ,又称为 平均值不等式 、 平均不等式 ,是数学中的一个重要公式。 公式内容为H n ≤G n ≤A n ≤Q n ,即 调和平均数 不超过 几何平均数 ,几何平均数不超过 算术平均数 ,算术平均数不超过 平方平均数 。
高中均值不等式
a²+b²≥2ab;√(ab)≤(a+b)/2;a²+b²+c²≥(a+b+c)²/3;a+b+c≥3×三次根号abc。
均值不等式是什么
均值不等式是数学中的一个重要公式。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。
1、调和平均数:Hn=n/(1/a1+1/a2+...+1/an)
2、几何平均数:Gn=(a1a2...an)^(1/n)
3、算术平均数:An=(a1+a2+...+an)/n
4、平方平均数:Qn=√ (a1^2+a2^2+...+an^2)/n
这四种平均数满足Hn≤Gn≤An≤Qn 的式子即为均值不等式。
高中4个基本不等式的公式
√[(a²+b²)/2]≥(a+b)/2≥√ab≥2/(1/a+1/b)。平方平均数≥算术平均数≥几何平均数≥调和平均数。
基本不等式两大技巧
“1”的妙用。题目中如果出现了两个式子之和为常数,要求这两个式子的倒数之和的最小值,通常用所求这个式子乘以1,然后把1用前面的常数表示出来,并将两个式子展开即可计算。如果题目已知两个式子倒数之和为常数,求两个式子之和的最小值,方法同上。
调整系数。有时候求解两个式子之积的最大值时,需要这两个式子之和为常数,但是很多时候并不是常数,这时候需要对其中某些系数进行调整,以便使其和为常数。
基本不等式中常用公式
(1)√((a²+b²)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)。(当且仅当a=b时,等号成立)
(2)√(ab)≤(a+b)/2。(当且仅当a=b时,等号成立)
(3)a²+b²≥2ab。(当且仅当a=b时,等号成立)
(4)ab≤(a+b)²/4。(当且仅当a=b时,等号成立)
(5)||a|-|b| |≤|a+b|≤|a|+|b|。(当且仅当a=b时,等号成立)