小数的定义是什么
由整数、小数点、以及小数点后的数字部位所组成的一种实数,作为一种特殊的实数形式,所有的分数都可以表示成小数的样式,如果一个小数的小数点左侧的整数部位为零,我们一般会称这个小数为纯小数
在小数部分的末尾添上或去掉任意个零,小数的大小不变。例如:0.4=0.400,0.060=0.06。
把小数点分别向右(或向左)移动n位,则小数的值将会扩大(或缩小)基底的n次方倍。(例如对十进制来说就是 )。
有限小数
小数部分后有有限个数位的小数。如3.1465,0.364,8.3218798456等,有限小数都属于有理数,可以化成分数形式。
一个最简分数可以被化作十进制的有限小数当且仅当其分母只含有质因数2或5或两者。 类似的,一个最简分数可以被化作某正整数底数的有限小数当且仅当其分母之质因数为此基底质因数的子集。
无限小数
循环小数
从小数部分的某一位起,一个数字或几个数字,依次不断地重复出现的小数叫做循环小数。如 1/7=0.142857142857142857……,11/6=1.833333……等。循环小数亦属于有理数,可以化成分数形式。
无限不循环小数
小数部分有无限多个数字,且没有依次不断地重复出现的一个数字或几个数字的小数叫做无限不循环小数,如圆周率π=3.14159265358979323……,自然对数的底数e=2.71828182845904……。无限不循环小数也就是无理数,不能化成分数形式。
分类
按是否是偶数分
可分为奇数和偶数。
1、奇数:不能被2整除的数叫奇数。
2、偶数:能被2整除的数叫偶数。也就是说,除了奇数,就是偶数
注:0是偶数。(2002年国际数学协会规定,零为偶数.我国2004年也规定零为偶数。偶数可以被2整除,0照样可以,只不过得数依然是0而已)。
按因数个数分
可分为质数、合数、1和0。
1、质 数:只有1和它本身这两个因数的自然数叫做质数。也称作素数。
2、合 数:除了1和它本身还有其它的因数的自然数叫做合数。
3、1:只有1个因数。它既不是质数也不是合数。
4、当然0不能计算因数,和1一样,也不是质数也不是合数。
备注:这里是因数不是约数。