抛物线弦长公式
d=p+x1+x2
抛物线弦长公式
d=p+x1+x2
在y²=2px中,过焦点直线交抛物线于A(x1,y1)和B(x2,y2)两点,则AB弦长:d=p+x1+x2,图形关于x轴对称,焦点为(p/2,0)。
扩展
在y²=-2px中,过焦点直线交抛物线于A(x1,y1)和B(x2,y2)两点,则AB弦长:d=p-(x1+x2),图形关于x轴对称,焦点为(-p/2,0)。
在抛物线x²=2py,过焦点直线交抛物线于A(x1,y1)和B(x2,y2)两点,则AB弦长:d=p+y1+y2,焦点为(0,p/2)。
在抛物线x²=-2py,过焦点直线交抛物线于A(x1,y1)和B(x2,y2)两点,则AB弦长:d=p-(y1+y2),焦点为(0,-p/2)。
弦长=2Rsina,R是半径,a是圆心角;弦长为连接圆上任意两点的线段的长度。弦长公式,在这里指直线与圆锥曲线相交所得弦长的公式。圆锥曲线, 是数学、几何学中通过平切圆锥(严格为一个正圆锥面和一个平面完整相切)得到的一些曲线,如:椭圆,双曲线,抛物线等。
弦长公式是什么
在三角形ABC中,它的外接圆半径为R,则正弦定理可表述为:
a/sinA=b/sinB=c/sinC=2R,即a=2RsinA,b=2RsinB,c=2RsinC;
(x-4)^2+y^2=16被直线y=(根号3)x所截得弦长
圆(x-4)^2+y^2=16与直线y=(根号3)x的一个交点恰为原点O(0,0),另一个交点记为A,则OA就是圆(x-4)^2+y^2=16被直线y=(根号3)x所截得的弦,若记圆与x轴的另一个交点为B,则三角形OAB就是一个直角三角形,其中∠AOB=60°,∠OAB=90°,OB=2R,所以
OA=2Rcos∠AOB=2Rcos60°=R。
又圆的半径为4,所以圆(x-4)^2+y^2=16被直线y=(根号3)x所截得的弦长为4。