外接圆半径公式
a/sinA=b/sinB=c/sinC=2R
外接圆半径公式
a/sinA=b/sinB=c/sinC=2R
经过三角形各顶点的圆叫做三角形的外接圆。
表示三角形外接圆半径的方法有
1.用三角形的边和角来表示它的外接圆的半径;
2.用三角形的三边来表示它的外接圆的半径;
3. 用三角形的三边和面积表示外接圆半径的公式等。
外接圆的性质
锐角三角形的中心在三角形的内部。
直角三角形的外中心在其斜边的中点。
钝角三角形的外中心在三角形之外。
具有外中心的图形必须有一个外圆(每侧垂直线的交点,称为外中心)
外接圆中心到三角形各顶点的线段长度相等
通过三角形三个顶点的圆称为三角形的外接圆,其中心称为三角形的外中心。在三角形中,三角形的外中心可能不在三角形的内部,但可能在三角形的外部(如钝角三角形)或三角形的侧面(如直角三角形)。
一个圆(并且只有一个圆)可以通过三个不在同一条线上的点来形成。
作图方法
即做三角形三条边的垂直平分线(两条也可,两线相交确定一点)
以线段为例,可以看作是三角形一边。分别以两个端点为圆心适当长度(相等)为半径做圆(只画出与线段相交的弧即可),再分别以两交点为圆心,等长为半径(保证两圆相交)做圆,过最后的两个圆的两个交点做直线,这条直线垂直且平分这条线段即线段的垂直平分线。
扩展
圆是一种几何图形。根据定义,通常用圆规来画圆。 同圆内圆的直径、半径的长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。 同时,圆又是“正无限多边形”,而“无限”只是一个概念。圆可以看成由无数个无限小的点组成的正多边形,当多边形的边数越多时,其形状、周长、面积就都越接近于圆。所以,世界上没有真正的圆,圆实际上只是一种概念性的图形。(当直线成为曲线即为无限点,因此也可以说有绝对意义的圆)。
在一个平面内,围绕一个点并以一定长度为距离旋转一周所形成的封闭曲线叫做圆(Circle)。
在平面内,圆是到定点的距离等于定长的点的集合叫做圆(Circle)
圆有无数条对称轴,对称轴经过圆心
圆具有旋转不变性
圆形是一种圆锥曲线,由平行于圆锥底面的平面截圆锥得到。
圆形规定为360°,是古巴比伦人在观察地平线太阳升起的时候,大约每4分钟移动一个位置,一天24小时移动了360个位置,所以规定一个圆内角为360°。这个°,代表太阳。