两直线间的距离公式
d=|C1-C2|/√(A^2+B^2)
两直线距离公式
d=|C1-C2|/√(A^2+B^2)
设两条直线方程为
Ax+By+C1=0
Ax+By+C2=0
点到直线距离是连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度。
扩展
连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度。目标在于通过对点到直线距离公式的推导。
通过对点到直线距离公式的推导,提高学生对数形结合的认识,加深用“计算”来处理“图形”的意识;把两条平行直线的距离关系转化为点到直线距离。
点P到直线上任意一点的距离的最小值就是点P到直线的距离。在上取任意点用两点的距离公式有,为了利用条件上式变形一下,配凑系数处理。
如果这条线段的材料有良好的记忆性能,在拉直后保持形状不变。将这条线段在平面上滚动,线段始终与平面贴合。
若将这条线段放置在曲面上,直线无法与曲面贴合。若将这条线段穿行曲面,可以发现,曲面被穿行的出入口之间的直线距离,比在曲面上从出口到入口的距离更短。
点到直线的距离公式
直线Ax+By+C=0 坐标(Xo,Yo)那么这点到这直线的距离就为:
d=│AXo+BYo+C│/√(A²+B²)
公式描述
公式中的直线方程为Ax+By+C=0,点P的坐标为(x0,y0)。
连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度,叫做点到直线的距离。
补充
空间点到直线距离
点M(1,2,3)到直线{x+y-z=1,2x+z=3}的距离是____?
由两平面可得z=3-2x,y=4-3x。因此直线方程为:x/(-1)=(y-4)/3=(z-3)/2,
直线的方向向量为(-1,3,2) 。可设直线上一点N(-t,3t+4,2t+3),MN向量为(-t-1,3t+2,2t)
若MN垂直于直线,则(-1,3,2)*(-t-1,3t+2,2t)=0。可解得t=-1/2
MN的模长sqr(6)/2即为所求。
点到平面的距离公式
d=|Ax0+By0+Cz0+D|/√(A²+B²+C²)。公式描述:公式中的平面方程为Ax+By+Cz+D=0,点P的坐标(x0,y0,z0),d为点P到平面的距离。
点到平面距离是指空间内一点到平面内一点的最小长度。特殊的,当点在平面内时,该点到平面的距离为0。计算一点到平面的距离,通常可通过向量法或测量法求得。