四面体体积公式
V=Sh/3
四面体体积公式
V=Sh/3
则四面体的体积为V=1/6*abc(sin^2α+sin^2β+sin^2γ+2cosαcosβcosγ-2)^(1/2)
先取定一个面为底面,设它的面积为s,再过另一个不在底面的顶点作底面的高,算出高为h 那么四面体的体积就是hs/3。
正四面体不同于其它四种正多面体,它没有对称中心。
正四面体有六个对称面,其中每一个都通过其一条棱和与这条棱相对的棱的中点。正四面体很容易由正方体得到,只要从正方体一个顶点A引三个面的对角线AB,AC,AD,并两点两点连结之即可。正四面体和一般四面体一样,根据保利克-施瓦兹定理能够用空间四边形及其对角线表示。正四面体的对偶是其自身。
补充
已知四面体顶点坐标分别为(x1,y1,z1),(x2,y2,z2),(x3,y3,z3),(x4,y4,z4),可以通过如下两种方法求四面体体积:
利用向量的混和积
过一顶点的三向量设为a,b,c,所求四面体的体积就是|(a×b)·c|/6。
此处假设(x1,y1,z1)为四面体顶点,则
a = (x2 - x1, y2 - y1, z2 -z1)
b = (x3 - x1, y3 - y1, z3 - z1)
c = (x4 - x1, y4 - y1, z4 - z1)
将上述向量带入上面公式即可求出四面体体积
直接利用行列式计算
| 1 1 1 1 |
v =1/6 * det | x1 x2 x3 x4 |
| y1 y2 y3 y4 |
| z1 z2 z3 z4 |
扩展
有关圆柱的公式
圆柱的表面积公式:S表=2πr²+2πrh。
圆柱的表面积=侧面积+两个底面积(S表=S侧+2S底);
圆柱的侧面积=底面的周长×高,也就是 S侧=2πrh;
圆柱的底面积=圆的面积,也就是S底=πr²。
圆柱体
在同一个平面内有一条定直线和一条动线,当这个平面绕着这条定直线旋转一周时,这条动线所成的面叫做旋转面,这条定直线叫做旋转面的轴,这条动线叫做旋转面的母线。如果用垂直于轴的两个平面去截圆柱面,那么两个截面和圆柱面所围成的几何体叫做直圆柱,简称圆柱体。
圆柱的侧面积公式
如果已知底面直径的话,就是:底面直径*兀*高=兀dh 如果已知底面半径的话,就是底面半径*2*兀*高=2兀rh 就是底面周长*高=sh 为什么用底面周长*高=sh呢?因为把圆柱的侧面展开,就会得到一个长方形或者是正方形,而长方形或者是正方形的面积公式就是长*宽或边长*边长,而圆柱的底面周长和高就等于长方形或者是正方形的两个边,所以要求圆柱侧面积就是用底面周长*高了
圆柱表面积计算公式
圆柱的表面积=侧面积+两个底面积=2πrh+2πr^2
单位:平方厘米、平方米、平方分米……
圆柱是由以矩形的一条边所在直线为旋转轴,其余三边绕该旋转轴旋转一周而形成的几何体。它有2个大小相同、相互平行的圆形底面和1个曲面侧面。其侧面展开是矩形。