打点计时器加速度计算公式
a=ΔS/t^2
a=Δ S/t^2,
设有N个间隔,则第N个间隔的长度是:S(N)-S(N-1),第(N-1)个间隔的长度是:S(N-1)-S(N-2) 。则两个间隔即三个相邻的点间的长度差为:【S(N)-S(N-1)】-【S(N-1)-S(N-2) 】=S(N)+S(N-2) -2S(N-1)。
用通式S=at^2/2计算,则有S(N)=a(Nt)^2/2,S(N-1)=a【(N-1)t】^2/2,S(N-2)=a【(N-2)t】^2/2,t为规定的时间间隔,将它们带入S(N)+S(N-2) -2S(N-1)中,
提取公因式at^2/2后,则有N^2+(N-2)^2 -2(N-1)^2=2,2与公因式at^2/2相乘,最后得at^2,即三个相邻的点间的长度差S(N)+S(N-2) -2S(N-1)=at^2,求加速度则为:a=Δ S/t^2。
逐差法是为提高实验数据的利用率,减小了随机误差的影响,另外也可减小了实验中仪器误差分量,因此是一种常用的数据处理方法。
逐差法是针对自变量等量变化,因变量也做等量变化时,所测得有序数据等间隔相减后取其逐差平均值得到的结果。其优点是充分利用了测量数据,具有对数据取平均的效果,可及时发现差错或数据的分布规律,及时纠正或及时总结数据规律。它也是物理实验中处理数据常用的一种方法。
逐差法求加速度
如果你用(X5-X4)+(X4-X3)+(X3-X2)+(X2-X1)=4△x=4aT²,到最后发现误差仍然存在。因为中间的项都可以被消除,无法体现减小误差的初衷。
所以用(X5-X2)+(X4-X1)=2*3△x=6aT²,可以减小误差来求加速度。
逐差法充分利用了测量数据,又保持了多次测量的优点,减少了测量误差。
逐差法应用实例
在高中物理“求匀变速直线运动物体的加速度”实验中分析纸带。
运用公式△X=at²;X3-X1=X4-X2=Xm-X(m-2)
当时间间隔T相等时,假设测得X1,X2,X3,X4四段距离,那么加速度a=[(X4-X2)+(X3-X1)]/2×2T2。
逐差法怎么用
逐差法求平均值:按照线性关系即一次方关系增加或减少的量,等间隔地测量了若干个数据。
假设有6个数字,x1、x2、x3、x4、x5、x6,将这些数据分成前、后两组,每组中对应的数据相减,再求平均数:(x4+x5+x6)-(x1+x2+x3)/3。其结果为5个间隔的平均增加量。好处是利用了全部数据,减小了误差,提供了可信度。
如果用x2-x1、x3-x2、x4-x3、x5-x4、x6-x5得到a1、a2、a3、a4、a5,再求平均值。其实带入纸带上的数据,会发现在求a1、a2、a3、a4、a5的平均值时,就是x2-x1、x3-x2、x4-x3、x5-x4、x6-x5要相加,最终得到x6-x1,其余几组数据都没有用到,那么实验误差必然比把数据都用了要大。