ln1等于几
在物理学,生物学等自然科学中有重要的意义。一般表示方法为lnx。数学中也常见以logx表示自然对数。因为对数函数基本性质过定点(1,0) ,即x=1时,y=0,所以ln1等于0。
对数符号log出自拉丁文logarithm,最早由意大利数学家卡瓦列里(Cavalieri)所使用。20世纪初,形成了对数的现代表示。为了使用方便,人们逐渐把以10为底的常用对数及以无理数e为底的自然对数分别记作lgN和lnN。
如果a的x次方等于N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作 x=logaN。其中,a叫做对数的底数,N叫做真数,x叫做“以a为底N的对数”。
如果a的x次方等于N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作x=loga N。其中,a叫做对数的底数,N叫做真数。
对数注意
1、特别地,我们称以10为底的对数叫做常用对数(common logarithm),并记为lgN。
2、称以无理数e(e=2.71828…)为底的对数称为自然对数(natural logarithm),并记为lnN。
3、零没有对数。
4、在实数范围内,负数无对数。在虚数范围内,负数是有对数的。
对数在数学内外有许多应用。这些事件中的一些与尺度不变性的概念有关。例如,鹦鹉螺的壳的每个室是下一个的大致副本,由常数因子缩放。这引起了对数螺旋。
扩展资料
1、特别地,我们称以10为底的对数叫做常用对数,并记为lgN。
2、称以无理数e(e=2.71828…)为底的对数称为自然对数,并记为lnN。
3、零没有对数。 在实数范围内,负数无对数。在虚数范围内,负数是有对数的。
4、有e(2k+1)πi+1=0,所以ln(-1)的具有周期性的多个值,ln(-1)=(2k+1)πi。这样,任意一个负数的自然对数都具有周期性的多个值。例如:ln(-5)=(2k+1)πi+ln 5。