二次函数所有公式汇总
y=ax²+bx+c(a≠0)
二次函数的基本表示形式为y=ax²+bx+c(a≠0)。二次函数最高次必须为二次, 二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。
二次函数表达式为y=ax²+bx+c(且a≠0),它的定义是一个二次多项式(或单项式)。
如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。
二次函数求根公式法
推导一下ax^2+bx+c=0的解。移项,ax^2+bx=-c两边除a,然后再配方,x^2+(b/a)x+(b/2a)^2=-c/a+(b/2a)^2[x+b/(2a)]^2=[b^2-4ac]/(2a)^2两边开平方根,解得x=[-b±√(b2-4ac)]/(2a)。
二次函数求根公式
二次函数有很多种,ax^2+bx+c=0,(a不等于0,b^2-4ac>0)的二次函数只是其中的一种,其解是x=[-b±(b^2-4ac)^(1/2)]/2a,若b^2-4ac<0,则函数将产生虚根,x=[-b±i(b^2-4ac)^(1/2)]/2a式中i为虚数。
函数ax^2+bx+c+dy^2+ey+fxy+......=0,(未知数的最高项次不全为0)叫做多项式函数;
(ax^2+bx+c+dy^2+ey+fxy+......)/(px^2+qx+r+my^2+ny+sxy+......)=g,(未知数的最高项次不全为0.分母不为0)叫做分式函数;
(ax^2+bx+c+dy^2+ey+fxy+......)^(1/2)=m,(未知数的最高项次不全为0)叫做无理函数。
二次函数对称轴公式
x=-b/2a
二次函数的基本表示形式为y=a(x的平方)+bx+c(a不等于0)。二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。
二次函数是一个二次多项式或单项式,它的基本表示形式为y=ax+bx+c(a≠0)。二次函数的表达式有y=ax^2+bx+c。它的对称轴是x=-b/a。y=a(x+h)+k。它的对称轴是x=-h。y=a(x-x1)(x-x2)+h。它的对称轴是x=(x1+x2)/2。
二次函数在初升高升学考试中频频出现,可以说是数学大题中的压轴题。二次函数题考查的知识点多,综合性较强,解题灵活多变。若P是抛物线第X象限上一动点,过点P做PM⊥x轴,PM交一次函数于点Q,求三角形面积最大值;设点M在抛物线的对称轴/y轴上,当三角形MXX是等腰三角形/直角三角形/等腰直角三角形/相似三角形时,求点M的坐标。
二次函数的顶点坐标公式
顶点坐标是用来表示二次函数抛物线顶点的位置的参考指标,顶点式:y=a(x-h)²+k (a≠0,k为常数)顶点坐标:【-b/2a,(4ac-b²)/4a】。
对于二次函数y=ax^2+bx+c,其顶点坐标为 (-b/2a,(4ac-b^2)/4a)。
1、抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).
2、抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大。若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小。
抛物线y=ax^2+bx+c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2-4ac>0,图象与x轴交于两点A(x₁,0)和B(x₂,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的两根.这两点间的距离AB=|x₂-x₁|
当△=0.图象与x轴只有一个交点;
当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.
抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a。
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值。
二次函数交点式公式
y=a (x-x1) (x-x2)