根号20等于多少 化简
√20=√(4×5)=√4×√5=2√5
√20=√(4×5)=√4×√5=2√5,化简公式可从左到右,也可从右到左运用于化简,另外还要用到整式乘法法则,乘法公式等。化简带根号的实数的结果的要求:根号内不能含有能开方的因数(因式),根号内(被开方数)不含分母,分母上不带根号。
化简
化简广泛应用于物理、化学和数学等理工学科。化简在数学上是一个非常重要的概念。复杂的式子,必须通过化简才能简便地求出它的值。
化简可分为整式化简、分数化简和解方程等。整式化简包括移项、合并同类项、去括号等;分数化简称为约分;解方程也可以看作是一个化简的过程。化简后的式子一般为最简式。整式化简的一般顺序:先乘方,再乘除,最后加减,能用乘法公式的先用公式计算使计算简便。
根号的运算法则
1、相乘时:两个有平方根的数相乘等于根号下两数的乘积,再化简;
2、相除时:两个有平方根的数相除等于根号下两数的商,再化简;
3、相加或相减:没有其他方法,只有用计算器求出具体值再相加或相减;
4、分母为带根号的式子,首先让分母有理化,使②分母没有根号,而把根号转移到分
5、同次根式相乘(除) ,把根式前面的系数相乘(除) ,作为积(商)的系数;把被开方数相乘(除) ,作为被开方数,根指数不变,然后再化成最简根式。非同次根式相乘(除) ,应先化成同次根式后,再按同次根式相乘(除)的法则。
扩展资料
数的开方是一种运算,一个正数有两个平方根,这两个平方根互为相反数。零的平方根是零,负数没有平方根。正数a的正的平方根,也叫做a的算术平方根,零的算术平方根仍旧是零。
实数可以分为有理数和无理数两类,或代数数和超越数两类,或正实数,负实数和零三类。有理数可以分成整数和分数,而整数可以分为正整数、零和负整数。分数可以分为正分数和负分数。无理数可以分为正无理数和负无理数。